RADIOGRAPHY ADVANCED TECHNIQUES

Real-time Radiography

          Real-time radiography (RTR), or real-time radioscopy, is a nondestructive test (NDT) method whereby an image is produced electronically, rather than on film, so that very little lag time occurs between the item being exposed to radiation and the resulting image. In most instances, the electronic image that is viewed results from the radiation passing through the object being inspected and interacting with a screen of material that fluoresces or gives off light when the interaction occurs. The fluorescent elements of the screen form the image much as the grains of silver form the image in film radiography. The image formed is a "positive image" since brighter areas on the image indicate where higher levels of transmitted radiation reached the screen. This image is the opposite of the negative image produced in film radiography. In other words, with RTR, the lighter, brighter areas represent thinner sections or less dense sections of the test object.


          Real-time radiography is a well-established method of NDT having applications in automotive, aerospace, pressure vessel, electronic, and munition industries, among others. The use of RTR is increasing due to a reduction in the cost of the equipment and resolution of issues such as the protecting and storing digital images. Since RTR is being used increasingly more, these educational materials were developed by the North Central Collaboration for NDT Education (NCCE) to introduce RTR to NDT technician students.

X-Ray Inspection Simulation

         One of the most significant recent advances in NDT has been the development and use of computer modeling that allows inspection variables to be scientifically and mathematically evaluated. In a few cases, these models have been combined with a graphical user interface to produce inspection simulation programs that allow engineers and technicians to evaluate the inspectability of a component in a virtual computer environment. One such program, XRSIM, was designed and developed at Iowa State University's Center for Nondestructive Evaluation. The program simulates radiographic inspections using a computer aided design (CAD) model of a part to produce physically accurate simulated radiographic images. XRSIM allows the operator to select a part, input the material properties, input the size, location, and properties of a defect. The operator then selects the size and type of film and adjusts the part location and orientation in relationship to the x-ray source. The x-ray generator settings are then specified to generate a desired radiographic film exposure. Exposure variables are quickly and easily revised allowing the operator to make and see results of defect size, material, and part or defect orientation.


       The almost instantaneous results produced by simulation programs make them especially valuable in education and training settings. Successful radiography depends on numerous variables that affect the outcome and quality of an image. Many of these variables have a substantial effect on image quality and others have little effect. Using inspection simulation programs, inspections can be modified and the resulting images viewed and evaluated to assess the impact these variables have on the image. Many inspection scenarios can be rapidly modeled since the shot setup and exposure can be quickly accomplished and the film-developing step is eliminated. Not only can a greater number and variety of problems be explored, but also the effects of variables can be learned and self-discovered through experimentation, which is one of the most effective modes of learning. Results are not complicated by unnecessary variables such as film processing variables and artifacts. Distractions unrelated to the primary learning exercise are eliminated. Through the use of simulation programs a more effective understanding of the scientific concepts associated with radiography will be developed.


          Another important aspect of the program is that it does not require a real part for the inspections. Inspections can be simulated that would otherwise be impossible or too costly to perform outside the computer environment. Flaws of various shapes, sizes, and materials can be easily introduced into the CAD model to produce a sample set for probability of detection exercises.


        It should be noted that densities produced in the simulated images may not match exactly the images produced in the laboratory using similar equipment settings. The difference between the actual and simulated radiographs are due to variations in the X-ray spectrum of various tubes and approximations made in the scattering model used to keep the computation times reasonable. As scattering effects become more dominant, the predicted density will agree less with the actual density on the radiograph. For example, when a one-inch steel sample is radiographed at 250 keV, over half of the total flux reaching the detector is due to scattering.
    

Comments

  1. Nice!! and your way of writing content is good and I'd recommend you to write the blogs with the same passion. Also, this fda certificaat is good for all the companies with lots of positivity.

    ReplyDelete

Post a Comment

Popular posts from this blog

Ultrasonic Testing Level 1 (UT-1) General &Specific Examination MCQ questions

Image Quality Indicator (IQI) wire type

PENETRANT TESTING MATERIALS